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Proposal



Goals:

- Run a real-time object detection architecture on a website.
- Target speed: 10 FPS

If there is time:

- age/gender/race classification.
- App development



You Only Look Once (YOLO)



What is YOLO?

Figure 1: [Redmon et al.(2016)Redmon, Divvala, Girshick, and Farhadi]

Steps:

- Divide image into S x S grid.
- Each cell predicts B bounding boxes with confidence scores.
- Each cell predicts C conditional class probability. g



Probability Equation:

Pr (Classi|Object) « Pr(Object) = IOUS4S = Pr(Class;)  IOUS4S. (1)
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Figure 2: Loss function of YOLO
[Redmon et al.(2016)Redmon, Divvala, Girshick, and Farhadil



The Architecture
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Figure 3: [Redmon et al.(2016)Redmon, Divvala, Girshick, and Farhadi]

- 24 convolutional layers and 2 fully connected layers

- Pretrained the layers on ImageNet






YOLOv3

Improvements:

- Anchor boxes

- Multiple predictions (13x13, 26x26, 52x52)
- Object confidence

- Non-maximal suppression

- Routing

- Skip connections



YOLOv3

Table 1: Comparison of YOLO Versions

Version Layers || FLOPS (Bn) || FPS mMAP
YOLOv1 26 not reported || 45 || 63.4 (VOC)
YOLOvV1-Tiny 9 not reported || 155 || 52.7 (VOC)
YOLOv?2 32 62.94 40 48.1
YOLOv2-Tiny 16 5.41 244 23.7
YOLOv3 106 140.69 20 579
YOLOv3-Tiny 24 5.56 220 331

Version 11is trained and tested on Pascal VOC, while all other versions are
trained and tested on MS COCO



YOLOv3- Architecture
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ShuffleNet




ShuffleNet: An Extremely Efficient Convolutional Neural Network

for Mobile Devices

- Reduce Flops to the Millions instead of Billions. 10-150 MFLOPS

- Authors claim "ShuffleNet achieves ~13x actual speedup over
AlexNet while maintaining comparable accuracy.”

- No mention on how quick
- Only 8 layers, now that's a low number

“In tiny networks, expensive pointwise convolutions result in
limited number of channels to meet the complexity constraint,
which might significantly damage the accuracy.”



ShuffleNet: An Extremely Efficient Convolutional Neural Network

for Mobile Devices
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Figure 1: Channel shuffle with two stacked group convolutions. GConv stands for group convolution.
a) two stacked convolution layers with the same number of groups. Each output channel only relates
to the input channels within the group. No cross talk; b) input and output channels are fully related
when GConv2 takes data from different groups after GConvl1; c) an equivalent implementation to b)
using channel shuffle.

Figure 4: [Zhang et al.(2017)Zhang, Zhou, Lin, and Sun]
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ShuffleNet cont.
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Figure 5: [Zhang et al.(2017)Zhang, Zhou, Lin, and Sun]



Conclusion




Conclusion

Next steps:

- Convert tiny-YOLOV2 to Javascript to run on a website.
- Implement tiny-YOLOVS3.

- Get algorithm to run at 10 FPS.

- Standard Neural Network Compression Techniques
- Inspiration from ShuffleNet, SqueezeNet, and MobileNet



Live Demo




Questions?
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